36 research outputs found

    The relation between patient discomfort and uncompensated forces of a patient support device for breast and regional lymph node radiotherapy

    Get PDF
    Although many authors stated that a user-centred design approach in medical device development has added values, the most common research approach within healthcare is evidence-based medicine, which tend to focus on functional data rather than patient wellbeing and comfort. End user comfort is well addressed in literature for commercial products such as seats and hand tools but no data was found for medical devices. A commercial patient support device for breast radiotherapy was analysed and a relation was found between discomfort and uncompensated internal body forces. Derived from CT-images, simplified patient free-body diagrams were analysed and pain and comfort evaluated. Subsequently, a new patient position was established and prototypes were developed. Patient comfort- and prototype optimization was done through iterative prototyping. With this approach, we were able to compensate all internal body forces and establish a force neutral patient free-body diagram. This resulted in comfortable patient positioning and favourable medical results

    Reproducibility of deep inspiration breath hold for prone left-sided whole breast irradiation

    Get PDF
    Background: Investigating reproducibility and instability of deep inspiration breath hold (DIBH) in the prone position to reduce heart dose for left-sided whole breast irradiation. Methods: Thirty patients were included and underwent 2 prone DIBH CT-scans during simulation. Overlap indices were calculated for the ipsilateral breast, heart and lungs to evaluate the anatomical reproducibility of the DIBH maneuver. The breathing motion of 21 patients treated with prone DIBH were registered using magnetic probes. These breathing curves were investigated to gain data on intra-fraction reproducibility and instability of the different DIBH cycles during treatment. Results: Overlap index was 0.98 for the ipsilateral breast and 0.96 for heart and both lungs between the 2 prone DIBH-scans. The magnetic sensors reported population amplitudes of 2.8 +/- 1.3 mm for shallow breathing and 11.7 +/- 4.7 mm for DIBH, an intra-fraction standard deviation of 1.0 +/- 0.4 mm for DIBH, an intra-breath hold instability of 1.0 +/- 0.6 mm and a treatment time of 300 +/- 69 s. Conclusion: Prone DIBH can be accurately clinically implemented with acceptable reproducibility and instability

    Factors modifying the risk for developing acute skin toxicity after whole-breast intensity modulated radiotherapy

    Get PDF
    Background: After breast-conserving radiation therapy most patients experience acute skin toxicity to some degree. This may impair patients' quality of life, cause pain and discomfort. In this study, we investigated treatment and patient-related factors, including genetic polymorphisms, that can modify the risk for severe radiation-induced skin toxicity in breast cancer patients. Methods: We studied 377 patients treated at Ghent University Hospital and at ST.-Elisabeth Clinic and Maternity in Namur, with adjuvant intensity modulated radiotherapy (IMRT) after breast-conserving surgery for breast cancer. Women were treated in a prone or supine position with normofractionated (25 x 2 Gy) or hypofractionated (15 x 2.67 Gy) IMRT alone or in combination with other adjuvant therapies. Patient-and treatment-related factors and genetic markers in regulatory regions of radioresponsive genes and in LIG3, MLH1 and XRCC3 genes were considered as variables. Acute dermatitis was scored using the CTCAEv3.0 scoring system. Desquamation was scored separately on a 3-point scale (0-none, 1-dry, 2-moist). Results: Two-hundred and twenty patients (58%) developed G2+ dermatitis whereas moist desquamation occurred in 56 patients (15%). Normofractionation (both p = D (p = 0.001 and p = 0.043) and concurrent hormone therapy (p = 0.001 and p = 0.037) were significantly associated with occurrence of acute dermatitis and moist desquamation, respectively. Additional factors associated with an increased risk of acute dermatitis were the genetic variation in MLH1 rs1800734 (p=0.008), smoking during RT (p = 0.010) and supine IMRT (p = 0.004). Patients receiving trastuzumab showed decreased risk of acute dermatitis (p < 0.001). Conclusions: The normofractionation schedule, supine IMRT, concomitant hormone treatment and patient related factors (high BMI, large breast, smoking during treatment and the genetic variation in MLH1 rs1800734) were associated with increased acute skin toxicity in patients receiving radiation therapy after breast-conserving surgery. Trastuzumab seemed to be protective

    Potential benefits of crawl position for prone radiation therapy in breast cancer

    Get PDF
    Purpose: To investigate crawl position with the arm at the treated side alongside the body and at the opposite side above the head for prone treatment in patients requiring breast and regional lymph node irradiation. Methods: Patient support devices for crawl position were built for CT simulation and treatment. An asymmetric fork design resulted from an iterative process of prototype construction and testing. The fork's large horn supports the hemi-thorax, shoulder, and elevated arm at the nontreated side and the head. The short, narrow horn supports the arm at the treated side. Between both horns, the treated breast and its regional lymph nodes are exposed. Endpoints were pain, comfort, set-up precision, beam access to the breast and lymph nodes, and plan dose metrics. Pain and comfort were tested by volunteers (n = 9); set-up precision, beam access, and plan dose metrics were tested by means of a patient study (n = 10). The AIOTM (Orfit, Wijnegem, Belgium) prone breastboard (AIOTM) was used as a reference regarding comfort and set-up precision. Results: Pain at the sternum, the ipsilateral shoulder, upper arm, and neck was lower in crawl position than with bilateral arm elevation on AIOTM. Comfort and setup precision were better on the crawl prototype than on AIOTM. In crawl position, beam directions in the coronal and near-sagittal planes have access to the breast or regional lymph nodes without traversing device components. Plan comparison between supine and crawl positions showed better dose homogeneity for the breast and lymph node targets and dose reductions to all organs at risk for crawl position. Conclusions: Radiation therapy for breast and regional lymph nodes in crawl position is feasible. Good comfort and set-up precision were demonstrated. Planning results support the hypothesis that breast and regional lymph nodes can be treated in crawl position with less dose to organs at risk and equal or better dose distribution in the target volumes than in supine position. The crawl technique is a candidate methodology for further investigation for patients requiring breast and regional lymph node irradiation

    Prolonging deep inspiration breath-hold time to 3 min during radiotherapy, a simple solution

    Get PDF
    Background and purpose: Deep inspiration breath-hold is an established technique to reduce heart dose during breast cancer radiotherapy. However, modern breast cancer radiotherapy techniques with lymph node irradiation often require long beam-on times of up to 5 min. Therefore, the combination with deep inspiration breath-hold (DIBH) becomes challenging. A simple support technique for longer duration deep inspiration breath-hold (L-DIBH), feasible for daily use at the radiotherapy department, is required to maximize heart sparing. Materials and methods: At our department, a new protocol for multiple L-DIBH of at least 2 min and 30 s was developed on 32 healthy volunteers and validated on 8 breast cancer patients during radiotherapy treatment, using a pragmatic process of iterative development, including all major stakeholders. Each participant performed 12 L-DIBHs, on 4 different days. Different methods of pre-oxygenation and voluntary hyperventilation were tested, and scored on L-DIBH duration, ease of use, and comfort. Results: Based on 384 L-DIBHs from 32 healthy volunteers, voluntary hyperventilation for 3 min whilst receiving high-flow nasal oxygen at 40 L/min was the most promising technique. During validation, the median L-DIBH duration in prone position of 8 breast cancer patients improved from 59 s without support to 3 min and 9 s using the technique (p < 0.001). Conclusion: A new and simple L-DIBH protocol was developed feasible for daily use at the radiotherapy center. (C) 2021 The Authors. Published by Elsevier B.V. on behalf of European Society for Radiotherapy and Oncology

    Feasibility study on pre or postoperative accelerated radiotherapy (POP-ART) in breast cancer patients

    Get PDF
    Background: In early-stage breast cancer, the cornerstone of treatment is surgery. After breast-conserving surgery, adjuvant radiotherapy has shown to improve locoregional control and overall survival rates. The use of breast radiotherapy in the preoperative (preop) setting is far less common. Nevertheless, it might improve disease-free survival as compared to postoperative radiotherapy. There is also a possibility of downsizing the tumour which might lead to a lower need for mastectomy. There are some obstacles that complicate its introduction into daily practice. It may complicate surgery or lead to an increase in wound complications or delayed wound healing. Another fear of preop radiotherapy is delaying surgery for too long. At Ghent University Hospital, we have experience with a 5-fraction radiotherapy schedule allowing radiotherapy delivery in a very short time span. Methods: Twenty female breast cancer patients with non-metastatic disease receiving preop chemotherapy will be randomized between preop or postoperative radiotherapy. The feasibility of preop radiotherapy will be evaluated based on overall treatment time. All patients will be treated in 5 fractions of 5.7 Gy to the whole breast with a simultaneous integrated boost to the tumour/tumour bed of 5 × 6.2 Gy. In case of lymph node irradiation, the lymph node regions will receive a dose of 27 Gy in 5 fractions of 5.4 Gy. The total duration of therapy will be 10 to 12 days. In the preop group, overall treatment time is defined as the time between diagnosis and the day of last surgery, in the postop group between diagnosis and last irradiation fraction. Toxicity related to surgery, radio-, and chemotherapy will be evaluated on dedicated case-report forms at predefined time points. Tumour response will be evaluated on the pathology report and on MRI at baseline and in the interval between chemotherapy and surgery. Discussion: The primary objective of the trial is to investigate the feasibility of preop radiotherapy. Secondary objectives are to search for biomarkers of response and toxicity and identify the involved cell death mechanisms and the effect of preop breast radiotherapy on the in-situ immune micro-environment

    Acute toxicity and health-related quality of life after accelerated whole breast irradiation in 5 fractions with simultaneous integrated boost

    Get PDF
    Introduction: Acceleration of radiotherapy in 5 fractions for breast cancer can reduce the burden of treatment. We report on acute toxicity after whole-breast irradiation with a simultaneous integrated boost in 5 fractions over 10-12 days. Material and methods: Acute toxicity and health-related quality of life (HRQoL) of 200 patients, randomized between a 15or 5-fractions schedule, were collected, using the CTCAE toxicity scoring system, the Multidimensional Fatigue Inventory, EORTC QLQ-C30 and BR23 and the BREAST-Q questionnaire. The prescribed dose to the breast was either 15*2.67 Gy (40.05 Gy) or 5*5.7 Gy (28.5 Gy). 90% of patients received a SIB to a cumulative dose of 46.8 Gy (15*3.12 Gy) or 31 Gy (5*6.2 Gy). Results: Physician-assessed toxicity was lower for the 5-fractions group. A significant difference was observed for breast pain (p = 0.002), fatigue (p < 0.0001), breast edema (p = 0.001) and dermatitis (p = 0.003). Patients treated in 5 fractions reported better mean HRQoL scores for breast symptoms (p = 0.001) and physical well-being (p = 0.001). A clinically important deterioration in HRQoL of 10 points or more was also less frequently observed in the latter group for physical functioning (p = 0.0005), social functioning (p = 0.0007), fatigue (p = 0.003), breast symptoms (p = 0.0002) and physical wellbeing (p = 0.002). Conclusion: In this single institute study, acute toxicity of accelerated breast radiotherapy in 5 fractions over 10-12 days seems to compare favourably to hypofractionated breast radiotherapy in 15 fractions. Less breast edema, dermatitis, desquamation, breast pain and fatigue are seen. Social and physical functioning are also less disturbed and patients have a better future perspective

    Crawl positioning improves set-up precision and patient comfort in prone whole breast irradiation

    Get PDF
    Prone positioning for whole-breast irradiation (WBI) reduces dose to organs at risk, but reduces set-up speed, precision, and comfort. We aimed to improve these problems by placing patients in prone crawl position on a newly developed crawl couch (CrC). A group of 10 right-sided breast cancer patients requiring WBI were randomized in this cross-over trial, comparing the CrC to a standard prone breastboard (BB). Laterolateral (LL), craniocaudal (CC) and anterioposterior (AP) set-up errors were evaluated with cone beam CT. Comfort, preference and set-up time (SUT) were assessed. Forty left and right-sided breast cancer patients served as a validation group. For BB versus CrC, AP, LL and CC mean patient shifts were - 0.8 +/- 2.8, 0.2 +/- 11.7 and - 0.6 +/- 4.4 versus - 0.2 +/- 3.3, - 0.8 +/- 2.5 and - 1.9 +/- 5.7 mm. LL shift spread was reduced significantly. Nine out of 10 patients preferred the CrC. SUT did not differ significantly. The validation group had mean patient shifts of 1.7 +/- 2.9 (AP), 0.2 +/- 3.6 (LL) and - 0.2 +/- 3.3 (CC) mm. Mean SUT in the validation group was 1 min longer (P<0.05) than the comparative group. Median SUT was 3 min in all groups. The CrC improved precision and comfort compared to BB. Set-up errors compare favourably to other prone-WBI trials and rival supine positioning

    Effects of deep inspiration breath hold on prone photon or proton irradiation of breast and regional lymph nodes

    Get PDF
    We report on a comparative dosimetrical study between deep inspiration breath hold (DIBH) and shallow breathing (SB) in prone crawl position for photon and proton radiotherapy of whole breast (WB) and locoregional lymph node regions, including the internal mammary chain (LN_MI). We investigate the dosimetrical effects of DIBH in prone crawl position on organs-at-risk for both photon and proton plans. For each modality, we further estimate the effects of lung and heart doses on the mortality risks of different risk profiles of patients. Thirty-one patients with invasive carcinoma of the left breast and pathologically confirmed positive lymph node status were included in this study. DIBH significantly decreased dose to heart for photon and proton radiotherapy. DIBH also decreased lung doses for photons, while increased lung doses were observed using protons because the retracting heart is displaced by low-density lung tissue. For other organs-at-risk, DIBH resulted in significant dose reductions using photons while minor differences in dose deposition between DIBH and SB were observed using protons. In patients with high risks for cardiac and lung cancer mortality, average thirty-year mortality rates from radiotherapy-related cardiac injury and lung cancer were estimated at 3.12% (photon DIBH), 4.03% (photon SB), 1.80% (proton DIBH) and 1.66% (proton SB). The radiationrelated mortality risk could not outweigh the similar to 8% disease-specific survival benefit of WB + LN_MI radiotherapy in any of the assessed treatments

    Whole breast and regional nodal irradiation in prone versus supine position in left sided breast cancer

    Get PDF
    Background: Prone whole breast irradiation (WBI) leads to reduced heart and lung doses in breast cancer patients receiving adjuvant radiotherapy. In this feasibility trial, we investigated the prone position for whole breast + lymph node irradiation (WB + LNI). Methods: A new support device was developed for optimal target coverage, on which patients are positioned in a position resembling a phase from the crawl swimming technique (prone crawl position). Five left sided breast cancer patients were included and simulated in supine and prone position. For each patient, a treatment plan was made in prone and supine position for WB + LNI to the whole axilla and the unoperated part of the axilla. Patients served as their own controls for comparing dosimetry of target volumes and organs at risk (OAR) in prone versus in supine position. Results: Target volume coverage differed only slightly between prone and supine position. Doses were significantly reduced (P < 0.05) in prone position for ipsilateral lung (Dmean, D2, V5, V10, V20, V30), contralateral lung (Dmean, D2), contralateral breast (Dmean, D2 and for total axillary WB + LNI also V5), thyroid (Dmean, D2, V5, V10, V20, V30), oesophagus (Dmean and for partial axillary WB + LNI also D2 and V5), skin (D2 and for partial axillary WB + LNI V105 and V107). There were no significant differences for heart and humeral head doses. Conclusions: Prone crawl position in WB + LNI allows for good breast and nodal target coverage with better sparing of ipsilateral lung, thyroid, contralateral breast, contralateral lung and oesophagus when compared to supine position. There is no difference in heart and humeral head doses
    corecore